Let's reproduce GPT-2(124M)
2025年6月28日
11:07
.files/image001.jpg)
BF16的range和FP32一样,不需要对梯度进行缩放,而FP16的range小于FP32,所以训练时需要梯度scaler。
.files/image002.jpg)
# super simple little MLP
net = torch.nn.Sequential(
torch.nn.Linear(16, 32),
torch.nn.GELU(),
torch.nn.Linear(32, 1)
)
torch.random.manual_seed(42)
#这里是大batch, batch_size=4,一次性输入4个样本,进行loss.backward()
x = torch.randn(4, 16)
y = torch.randn(4, 1)
net.zero_grad()
yhat = net(x)
loss = torch.nn.functional.mse_loss(yhat, y)
loss.backward()
print(net[0].weight.grad.view(-1)[:10])
# the loss objective
here is (due to readuction='mean')
# L = 1/4
* [
# (y[0] - yhat[0])**2 +
# (y[1] - yhat[1])**2 +
# (y[2] - yhat[2])**2 +
# (y[3] - yhat[3])**2
# ]
# NOTE:
1/4!
# now let's do it with
grad_accum_steps of 4, and B=1
# the
loss objective here is different because
#
accumulation in gradient <---> SUM in loss
# i.e. we
instead get:
# L0 =
1/4(y[0] - yhat[0])**2
# L1 =
1/4(y[1] - yhat[1])**2
# L2 =
1/4(y[2] - yhat[2])**2
# L3 =
1/4(y[3] - yhat[3])**2
# L = L0
+ L1 + L2 + L3
# NOTE:
the "normalizer" of 1/4 is lost
net.zero_grad()
#这里是小batch, batch_size=1,每次输入1个样本,进行loss.backward,此时loss要进行缩放,即loss=loss/4
for i
in range(4):
yhat = net(x[i])
loss = torch.nn.functional.mse_loss(yhat, y[i])
loss = loss / 4 # <-- have to add back the "normalizer"!
loss.backward()
print(net[0].weight.grad.view(-1)[:10])
import os
import math
import time
import inspect
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F
from hellaswag import render_example, iterate_examples
# -----------------------------------------------------------------------------
class CausalSelfAttention(nn.Module):
#多头注意力并不复杂,就是多个头并行工作,它们的输出被简单地concat起来,形成了多头注意力的输出
#这里的实现跟lets build gpt中不同,不是先定义一个head,再定义Multihead,这里是直接实现多个head
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
# key, query, value projections for all heads, but in a batch
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd) #这里用self.c_attn直接相当于多头的Wq,Wk,Wv权重矩阵。原来单个头的 self.query = nn.Linear(n_embd, head_size, bias=False), self.key= nn.Linear(n_embd, head_size, bias=False), self.value = nn.Linear(n_embd, head_size, bias=False),即单头的q,k,v的size都是B,T,head_size,多头的q,k,v的size都是B,T,n_embd,多头的q,k,v一共的size就是3倍的B,T,n_embd(因为q,k,v每个都是B,T,n_embd),也就是这里的self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
# output projection
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
self.c_proj.NANOGPT_SCALE_INIT = 1
# regularization
self.n_head = config.n_head
self.n_embd = config.n_embd
def forward(self, x):
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
qkv = self.c_attn(x) #qkv先是一个整体,
q, k, v = qkv.split(self.n_embd, dim=2) #在这里将q,k,v进行split,从而获得q,k,v,注意这里的q,k,v是多头的q,k,v,而不是单头的q,k,v,即它们的size是B,T,n_embd,而不是B,T,head_size。之前在let's build GPT的实现中k = self.key(x) ,q=self.query(x), v=self.value(x),这种是分别得到单个头的q,k,v,然后再把n个head的q,k,v concat起来。
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, headsize) 我们把头的数量nh变成了一个类似batch的维度,这样pytorch可以像处理batch一样并行地处理nh。
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, headsize)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, headsize)
y = F.scaled_dot_product_attention(q, k, v, is_causal=True) # flash attention,当执行这行代码时,pytorch会自动调用flash attention,
#flash attention相当于代替了下面这4行代码
#att = q @ k.transpose(-2,-1) * C**-0.5 # (B, T, C) @ (B, C, T) -> (B, T, T)
#att = att.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)
#att = F.softmax(att, dim=-1) # (B, T, T)
#y = att@v
FlashAttention利用底层硬件的内存层次知识,例如GPU的内存层次结构,来提高计算速度和减少内存访问开销。 FlashAttention的核心原理是通过将输入分块并在每个块上执行注意力操作,从而减少对高带宽内存(HBM)的读写操作。具体而言,FlashAttention使用平铺和重计算等经典技术,将输入块从HBM加载到SRAM(快速缓存),在SRAM上执行注意力操作,并将结果更新回HBM。FlashAttention减少了内存读写量,从而实现了2-4倍的时钟时间加速。
.files/image003.jpg)
FlashAttention将attention的四个操作,整合成单一的融合核。如果只看浮点运算数FLOPS,flash attention比原始的attention执行了更多的FLOPS。Flashattention使得attention得分矩阵即att=q@k.transpose(-2,-1)永远不会被具象化,也就不会被读写到HBM中,这是一个非常大的矩阵,B,T,T。
也就是说,原始的attention计算需要先算出q@k,然后再将结果转移到HBM显存,再将结果从HBM转移到SRAM,再计算mask,再进行转移,再计算softmax,再进行转移 ,再计算dropout,再进行转移,再计算attn@v。而flash attn一次性地转移,并计算最后的结果。
Flash attn使用了在线softmax技巧,(和移动平均类似??),不需要得到softmax的所有元素,
Flash attn只是一个attention实现的重写,是一个更快的内核 ,并没有改变任何的计算,也不会提升算法效果。
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
# output projection
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
self.gelu = nn.GELU(approximate='tanh')
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd) #MLP是两个线性层c_fc、c_proj中间夹了一个GELU激活函数
self.c_proj.NANOGPT_SCALE_INIT = 1
def forward(self, x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln_1(x)) #预归一化,先经过layernorm,再经过attention。注意力是一个聚合函数,池化函数,加权和函数,是一个归约操作reduce operation,
x = x + self.mlp(self.ln_2(x)) #先经过layernorm,再经过mlp。MLP发生在每个独立的token上,token之间没有交换信息,是一个map操作。所以Transformer可以看成一个不断进行map reduce的过程。
#残差连接,即加法,即在反向传播时将梯度平均地分配给它的两个分支
return x
@dataclass
class GPTConfig:
block_size: int = 1024 # max sequence length
vocab_size: int = 50257 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
n_layer: int = 12 # number of layers
n_head: int = 12 # number of heads
n_embd: int = 768 # embedding dimension
官方GPT2的state_dict(),我们仿照这个state_dict进行模型构建
model_hf = GPT2LMHeadModel.from_pretrained("gpt2") # 124M
sd_hf = model_hf.state_dict()
for k, v in sd_hf.items():
print(k, v.shape)
transformer.wte.weight
torch.Size([50257, 768])
transformer.wpe.weight torch.Size([1024, 768])
transformer.h.0.ln_1.weight torch.Size([768])
transformer.h.0.ln_1.bias
torch.Size([768])
transformer.h.0.attn.c_attn.weight torch.Size([768,
2304])
transformer.h.0.attn.c_attn.bias
torch.Size([2304])
transformer.h.0.attn.c_proj.weight torch.Size([768,
768])
transformer.h.0.attn.c_proj.bias
torch.Size([768])
transformer.h.0.ln_2.weight torch.Size([768])
transformer.h.0.ln_2.bias
torch.Size([768])
transformer.h.0.mlp.c_fc.weight torch.Size([768,
3072])
transformer.h.0.mlp.c_fc.bias
torch.Size([3072])
transformer.h.0.mlp.c_proj.weight torch.Size([3072,
768])
transformer.h.0.mlp.c_proj.bias torch.Size([768])
transformer.h.1.ln_1.weight torch.Size([768])
transformer.h.1.ln_1.bias
torch.Size([768])
transformer.h.1.attn.c_attn.weight torch.Size([768,
2304])
transformer.h.1.attn.c_attn.bias torch.Size([2304])
transformer.h.1.attn.c_proj.weight torch.Size([768,
768])
transformer.h.1.attn.c_proj.bias
torch.Size([768])
transformer.h.1.ln_2.weight torch.Size([768])
transformer.h.1.ln_2.bias
torch.Size([768])
transformer.h.1.mlp.c_fc.weight torch.Size([768, 3072])
transformer.h.1.mlp.c_fc.bias
torch.Size([3072])
transformer.h.1.mlp.c_proj.weight torch.Size([3072,
768])
transformer.h.1.mlp.c_proj.bias
torch.Size([768])
transformer.h.2.ln_1.weight torch.Size([768])
transformer.h.2.ln_1.bias
torch.Size([768])
transformer.h.2.attn.c_attn.weight torch.Size([768,
2304])
transformer.h.2.attn.c_attn.bias
torch.Size([2304])
transformer.h.2.attn.c_proj.weight torch.Size([768,
768])
transformer.h.2.attn.c_proj.bias torch.Size([768])
transformer.h.2.ln_2.weight torch.Size([768])
transformer.h.2.ln_2.bias
torch.Size([768])
transformer.h.2.mlp.c_fc.weight torch.Size([768,
3072])
transformer.h.2.mlp.c_fc.bias
torch.Size([3072])
transformer.h.2.mlp.c_proj.weight torch.Size([3072,
768])
transformer.h.2.mlp.c_proj.bias torch.Size([768])
…….
transformer.ln_f.weight
torch.Size([768])
transformer.ln_f.bias torch.Size([768])
lm_head.weight torch.Size([50257, 768])
注意,lm_head.weight和transformer.wte.weight的size是一样的,都是20257,768,实际上不只是大小一样,这两个其实是同一个tensor,即权重共享。原因:如果两个token在语义上是相似的,那么它们在嵌入空间中也应该是相邻的,即经过transformer.wte.weight后的embedding相邻,同样的,这两个相似语义的token经过lm_head.weight后的输出概率也应该是几乎相同的。即两个token语义相似<==>两个embedding相邻<==>两个输出logits相同。这两个矩阵具有相同的特性。因此进行权重共享。
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.transformer = nn.ModuleDict(dict( #如上所示,官方GPT2的主模块的名称是transformer,是一个ModuleDict,可以像字典一样通过key来索引到子模块
wte = nn.Embedding(config.vocab_size, config.n_embd), #token embedding
wpe = nn.Embedding(config.block_size, config.n_embd), #位置embedding
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),# transformer.h,是一个ModuleList,可以像列表一样用整数进行索引,h[0],h[1]…h[11],每个元素是一个Blcok,Block的定义在上面
ln_f = nn.LayerNorm(config.n_embd), #GPT2最后有一个layernorm层
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# weight sharing scheme
self.transformer.wte.weight = self.lm_head.weight
# init params
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
std = 0.02 #大概是1/sqrt(d_model)的大小,因为矩阵A*矩阵B后,矩阵A的方差会被放大,所以需要对矩阵B的方差进行缩放,以保证A*B的方差和A的方差相比不会被放大很多。
if hasattr(module, 'NANOGPT_SCALE_INIT'):
std *= (2 * self.config.n_layer) ** -0.5 #经过n次的x=x+y,x的方差会逐渐增加。因此需要根据残差流的层数或次数对权重的std进行缩放,乘以2是因此每个layer经过了2次残差连接,一次是atten,一次是mlp,对std进行缩放,以保证tensor x的方差不会随着残差流层数的增加再变大。
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
if module.bias is not None:
torch.nn.init.zeros_(module.bias) #bias初始化为0,pytorch默认是均匀分布
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
# idx is of shape (B, T)
B, T = idx.size()
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
# forward the token and posisition embeddings
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd),Batch中所有样本的position embeddings都是一样的
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
x = tok_emb + pos_emb #这里相加时其实进行了广播
# forward the blocks of the transformer
for block in self.transformer.h:
x = block(x)
# forward the final layernorm and the classifier
x = self.transformer.ln_f(x)
logits = self.lm_head(x) # (B, T, vocab_size)
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))#F.cross_entropy不支持多维输入,只支持2维输入,所以将logits(B, T, vocab_size)变为(B*T,vocab_size)二维tensor。targets要变为一维的。
return logits, loss
@classmethod
def from_pretrained(cls, model_type):
"""Loads pretrained GPT-2 model weights from huggingface"""
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
from transformers import GPT2LMHeadModel
print("loading weights from pretrained gpt: %s" % model_type)
# n_layer, n_head and n_embd are determined from model_type
config_args = {
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
}[model_type]
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
# create a from-scratch initialized minGPT model
config = GPTConfig(**config_args)
model = GPT(config)
sd = model.state_dict()
sd_keys = sd.keys()
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
# init a huggingface/transformers model
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
sd_hf = model_hf.state_dict()
# copy while ensuring all of the parameters are aligned and match in names and shapes
sd_keys_hf = sd_hf.keys()
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
# this means that we have to transpose these weights when we import them
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
for k in sd_keys_hf:
if any(k.endswith(w) for w in transposed):
# special treatment for the Conv1D weights we need to transpose
assert sd_hf[k].shape[::-1] == sd[k].shape
with torch.no_grad():
sd[k].copy_(sd_hf[k].t())
else:
# vanilla copy over the other parameters
assert sd_hf[k].shape == sd[k].shape
with torch.no_grad():
sd[k].copy_(sd_hf[k])
return model
def configure_optimizers(self, weight_decay, learning_rate, device_type):
# start with all of the candidate parameters (that require grad)
param_dict = {pn: p for pn, p in self.named_parameters()}
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
optim_groups = [
{'params': decay_params, 'weight_decay': weight_decay},
{'params': nodecay_params, 'weight_decay': 0.0}
]
num_decay_params = sum(p.numel() for p in decay_params)
num_nodecay_params = sum(p.numel() for p in nodecay_params)
if master_process:
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
# Create AdamW optimizer and use the fused version if it is available
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters #检查adamw的参数
use_fused = fused_available and device_type == "cuda"
if master_process:
print(f"using fused AdamW: {use_fused}")
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8, fused=use_fused)
return optimizer
# -----------------------------------------------------------------------------
import tiktoken
import numpy as np
def load_tokens(filename):
npt = np.load(filename)
npt = npt.astype(np.int32) # added after video
ptt = torch.tensor(npt, dtype=torch.long)
return ptt
class DataLoaderLite:
def __init__(self, B, T, process_rank, num_processes, split):
self.B = B
self.T = T
self.process_rank = process_rank
self.num_processes = num_processes
assert split in {'train', 'val'}
# get the shard filenames
data_root = "edu_fineweb10B"
shards = os.listdir(data_root)
shards = [s for s in shards if split in s]
shards = sorted(shards)
shards = [os.path.join(data_root, s) for s in shards]
self.shards = shards
assert len(shards) > 0, f"no shards found for split {split}"
if master_process:
print(f"found {len(shards)} shards for split {split}")
self.reset()
def reset(self):
# state, init at shard zero
self.current_shard = 0
self.tokens = load_tokens(self.shards[self.current_shard])
self.current_position = self.B * self.T * self.process_rank
def next_batch(self):
B, T = self.B, self.T
buf = self.tokens[self.current_position : self.current_position+B*T+1]
x = (buf[:-1]).view(B, T) # inputs
y = (buf[1:]).view(B, T) # targets
# advance the position in the tensor
self.current_position += B * T * self.num_processes #ddp时,每次取数据的跨度要乘以num_processes,进程数量
# if loading the next batch would be out of bounds, advance to next shard
if self.current_position + (B * T * self.num_processes + 1) > len(self.tokens):
self.current_shard = (self.current_shard + 1) % len(self.shards)
self.tokens = load_tokens(self.shards[self.current_shard])
self.current_position = B * T * self.process_rank
return x, y
# -----------------------------------------------------------------------------
# helper function for HellaSwag eval
# takes tokens, mask, and logits, returns the index of the completion with the lowest loss
def get_most_likely_row(tokens, mask, logits):
# evaluate the autoregressive loss at all positions
shift_logits = (logits[..., :-1, :]).contiguous()
shift_tokens = (tokens[..., 1:]).contiguous()
flat_shift_logits = shift_logits.view(-1, shift_logits.size(-1))
flat_shift_tokens = shift_tokens.view(-1)
shift_losses = F.cross_entropy(flat_shift_logits, flat_shift_tokens, reduction='none')
shift_losses = shift_losses.view(tokens.size(0), -1)
# now get the average loss just for the completion region (where mask == 1), in each row
shift_mask = (mask[..., 1:]).contiguous() # we must shift mask, so we start at the last prompt token
masked_shift_losses = shift_losses * shift_mask
# sum and divide by the number of 1s in the mask
sum_loss = masked_shift_losses.sum(dim=1)
avg_loss = sum_loss / shift_mask.sum(dim=1)
# now we have a loss for each of the 4 completions
# the one with the lowest loss should be the most likely
pred_norm = avg_loss.argmin().item()
return pred_norm
# -----------------------------------------------------------------------------
# simple launch:
# python train_gpt2.py
# DDP launch for e.g. 8 GPUs:
# torchrun --standalone --nproc_per_node=8 train_gpt2.py
# run the training loop
from torch.distributed import init_process_group, destroy_process_group
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.distributed as dist
# set up DDP (distributed data parallel).
# torchrun command sets the env variables RANK, LOCAL_RANK, and WORLD_SIZE
# 8块GPU,开8个进程,每个进程一个GPU,有一个主进程,rank=0,其他是辅助进程。
ddp = int(os.environ.get('RANK', -1)) != -1 # is this a ddp run?
if ddp:
# use of DDP atm demands CUDA, we set the device appropriately according to rank
assert torch.cuda.is_available(), "for now i think we need CUDA for DDP"
init_process_group(backend='nccl')
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK']) # local_rank,只有在多节点时才使用,是单个 节点上的GPU的rank
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
master_process = ddp_rank == 0 # this process will do logging, checkpointing etc.
else:
# vanilla, non-DDP run
ddp_rank = 0
ddp_local_rank = 0
ddp_world_size = 1
master_process = True
# attempt to autodetect device
device = "cpu"
if torch.cuda.is_available():
device = "cuda"
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
device = "mps"
print(f"using device: {device}")
# added after video, pytorch can be serious about it's device vs. device_type distinction
device_type = "cuda" if device.startswith("cuda") else "cpu"
torch.manual_seed(1337)
if torch.cuda.is_available():
torch.cuda.manual_seed(1337)
enc = tiktoken.get_encoding("gpt2")
total_batch_size = 524288 # 2**19, ~0.5M, in number of tokens
B = 64 # micro batch size
T = 1024 # sequence length
assert total_batch_size % (B * T * ddp_world_size) == 0, "make sure total_batch_size is divisible by B * T * ddp_world_size"
grad_accum_steps = total_batch_size // (B * T * ddp_world_size) #grad_accum_steps要相应调整,因为ddp
if master_process: #只有主进程负责打印
print(f"total desired batch size: {total_batch_size}")
print(f"=> calculated gradient accumulation steps: {grad_accum_steps}")
train_loader = DataLoaderLite(B=B, T=T, process_rank=ddp_rank, num_processes=ddp_world_size, split="train")
val_loader = DataLoaderLite(B=B, T=T, process_rank=ddp_rank, num_processes=ddp_world_size, split="val")
torch.set_float32_matmul_precision('high')
# create model
model = GPT(GPTConfig(vocab_size=50304))
# model = GPT.from_pretrained("gpt2") # or init from OpenAI GPT-2
model.to(device) #model.to(device)将model转移到device上,但是对于tensor x来说,必须要用x=x.to(device),因为x是没有状态的,x.to(device)不会将x转换为device上的对象,而是返回指向device上新内存的指针,。
use_compile = False # torch.compile interferes with HellaSwag eval and Generation. TODO fix
if use_compile:
model = torch.compile(model)
if ddp:
model = DDP(model, device_ids=[ddp_local_rank])
raw_model = model.module if ddp else model # always contains the "raw" unwrapped model 如果用ddp,那么raw_model是model.module
max_lr = 6e-4
min_lr = max_lr * 0.1
warmup_steps = 715
max_steps = 19073 # 19,073 steps is ~1 epoch, if data is 10B tokens and batch size 0.5M tokens
def get_lr(it):
# 1) linear warmup for warmup_iters steps
if it < warmup_steps:
return max_lr * (it+1) / warmup_steps
# 2) if it > lr_decay_iters, return min learning rate
if it > max_steps:
return min_lr
# 3) in between, use cosine decay down to min learning rate
decay_ratio = (it - warmup_steps) / (max_steps - warmup_steps)
assert 0 <= decay_ratio <= 1
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # coeff starts at 1 and goes to 0
return min_lr + coeff * (max_lr - min_lr)
# optimize!
optimizer = raw_model.configure_optimizers(weight_decay=0.1, learning_rate=6e-4, device_type=device_type)
# create the log directory we will write checkpoints to and log to
log_dir = "log"
os.makedirs(log_dir, exist_ok=True)
log_file = os.path.join(log_dir, f"log.txt")
with open(log_file, "w") as f: # open for writing to clear the file
pass
for step in range(max_steps):
t0 = time.time()
last_step = (step == max_steps - 1)
# once in a while evaluate our validation loss
if step % 250 == 0 or last_step:
model.eval()
val_loader.reset()
with torch.no_grad():
val_loss_accum = 0.0
val_loss_steps = 20
for _ in range(val_loss_steps):
x, y = val_loader.next_batch()
x, y = x.to(device), y.to(device)
with torch.autocast(device_type=device_type, dtype=torch.bfloat16):
logits, loss = model(x, y)
loss = loss / val_loss_steps
val_loss_accum += loss.detach()
if ddp:
dist.all_reduce(val_loss_accum, op=dist.ReduceOp.AVG)
if master_process:
print(f"validation loss: {val_loss_accum.item():.4f}")
with open(log_file, "a") as f:
f.write(f"{step} val {val_loss_accum.item():.4f}\n")
if step > 0 and (step % 5000 == 0 or last_step):
# optionally write model checkpoints
checkpoint_path = os.path.join(log_dir, f"model_{step:05d}.pt")
checkpoint = {
'model': raw_model.state_dict(),
'config': raw_model.config,
'step': step,
'val_loss': val_loss_accum.item()
}
# you might also want to add optimizer.state_dict() and
# rng seeds etc., if you wanted to more exactly resume training
torch.save(checkpoint, checkpoint_path)
# once in a while evaluate hellaswag
if (step % 250 == 0 or last_step) and (not use_compile):
num_correct_norm = 0
num_total = 0
for i, example in enumerate(iterate_examples("val")):
# only process examples where i % ddp_world_size == ddp_rank
if i % ddp_world_size != ddp_rank:
continue
# render the example into tokens and labels
_, tokens, mask, label = render_example(example)
tokens = tokens.to(device)
mask = mask.to(device)
# get the logits
with torch.no_grad():
with torch.autocast(device_type=device_type, dtype=torch.bfloat16):
logits, loss = model(tokens)
pred_norm = get_most_likely_row(tokens, mask, logits)
num_total += 1
num_correct_norm += int(pred_norm == label)
# reduce the stats across all processes
if ddp:
num_total = torch.tensor(num_total, dtype=torch.long, device=device)
num_correct_norm = torch.tensor(num_correct_norm, dtype=torch.long, device=device)
dist.all_reduce(num_total, op=dist.ReduceOp.SUM) #rank之间进行同步
dist.all_reduce(num_correct_norm, op=dist.ReduceOp.SUM) #rank之间进行同步
num_total = num_total.item()
num_correct_norm = num_correct_norm.item()
acc_norm = num_correct_norm / num_total
if master_process:
print(f"HellaSwag accuracy: {num_correct_norm}/{num_total}={acc_norm:.4f}")
with open(log_file, "a") as f:
f.write(f"{step} hella {acc_norm:.4f}\n")
# once in a while generate from the model (except step 0, which is noise)
if ((step > 0 and step % 250 == 0) or last_step) and (not use_compile):
model.eval()
num_return_sequences = 4
max_length = 32
tokens = enc.encode("Hello, I'm a language model,")
tokens = torch.tensor(tokens, dtype=torch.long)
tokens = tokens.unsqueeze(0).repeat(num_return_sequences, 1)
xgen = tokens.to(device)
sample_rng = torch.Generator(device=device)
sample_rng.manual_seed(42 + ddp_rank)
while xgen.size(1) < max_length:
# forward the model to get the logits
with torch.no_grad():
with torch.autocast(device_type=device_type, dtype=torch.bfloat16):
logits, loss = model(xgen) # (B, T, vocab_size)
# take the logits at the last position
logits = logits[:, -1, :] # (B, vocab_size)
# get the probabilities
probs = F.softmax(logits, dim=-1)
# do top-k sampling of 50 (huggingface pipeline default)
# topk_probs here becomes (5, 50), topk_indices is (5, 50)
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
# select a token from the top-k probabilities
# note: multinomial does not demand the input to sum to 1
ix = torch.multinomial(topk_probs, 1, generator=sample_rng) # (B, 1)
# gather the corresponding indices
xcol = torch.gather(topk_indices, -1, ix) # (B, 1)
# append to the sequence
xgen = torch.cat((xgen, xcol), dim=1)
# print the generated text
for i in range(num_return_sequences):
tokens = xgen[i, :max_length].tolist()
decoded = enc.decode(tokens)
print(f"rank {ddp_rank} sample {i}: {decoded}")
# do one step of the optimization 这里开始训练
model.train()
optimizer.zero_grad()
loss_accum = 0.0
for micro_step in range(grad_accum_steps): #梯度累积步数,在每个step中,只进行loss.backward,只进行梯度累加,不进行梯度更新
x, y = train_loader.next_batch()
x, y = x.to(device), y.to(device)
# added after video, this field is also used by the forward pass.
if ddp:
model.require_backward_grad_sync = (micro_step == grad_accum_steps - 1) #loss.backward()会进行梯度同步 ,在这里设置只有在grad_accum_steps的最后一步时,再进行所有rank的梯度同步。
with torch.autocast(device_type=device_type, dtype=torch.bfloat16):#进行bf16运算。但并不是model中的所有层都会被转换为bf16,只有部分层会进行bf16转换,其他层如softmax等仍然保持在fp32,因为这些层对精度变化更敏感。矩阵乘法对精度的变化 相对来说很稳健。
logits, loss = model(x, y)
# we have to scale the loss to account for gradient accumulation,
# because the gradients just add on each successive backward().
# addition of gradients corresponds to a SUM in the objective, but
# instead of a SUM we want MEAN. Scale the loss here so it comes out right
loss = loss / grad_accum_steps
loss_accum += loss.detach()
loss.backward()
if ddp:
dist.all_reduce(loss_accum, op=dist.ReduceOp.AVG) #这行代码对所有rank上的loss进行平均,并同步存储在每个rank上
norm = torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
# determine and set the learning rate for this iteration
lr = get_lr(step)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
optimizer.step()
if device_type == "cuda":
torch.cuda.synchronize() # wait for the GPU to finish work
t1 = time.time()
dt = t1 - t0 # time difference in seconds
tokens_processed = train_loader.B * train_loader.T * grad_accum_steps * ddp_world_size
tokens_per_sec = tokens_processed / dt
if master_process:
print(f"step {step:5d} | loss: {loss_accum.item():.6f} | lr {lr:.4e} | norm: {norm:.4f} | dt: {dt*1000:.2f}ms | tok/sec: {tokens_per_sec:.2f}")
with open(log_file, "a") as f:
f.write(f"{step} train {loss_accum.item():.6f}\n")
if ddp:
destroy_process_group()
已使用 OneNote 创建。